Extensions 1→N→G→Q→1 with N=C22×A4 and Q=C4

Direct product G=N×Q with N=C22×A4 and Q=C4
dρLabelID
A4×C22×C448A4xC2^2xC4192,1496

Semidirect products G=N:Q with N=C22×A4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22×A4)⋊1C4 = A4×C22⋊C4φ: C4/C2C2 ⊆ Out C22×A424(C2^2xA4):1C4192,994
(C22×A4)⋊2C4 = C25.S3φ: C4/C2C2 ⊆ Out C22×A424(C2^2xA4):2C4192,991
(C22×A4)⋊3C4 = C22×A4⋊C4φ: C4/C2C2 ⊆ Out C22×A448(C2^2xA4):3C4192,1487

Non-split extensions G=N.Q with N=C22×A4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22×A4).1C4 = A4×M4(2)φ: C4/C2C2 ⊆ Out C22×A4246(C2^2xA4).1C4192,1011
(C22×A4).2C4 = C2×A4⋊C8φ: C4/C2C2 ⊆ Out C22×A448(C2^2xA4).2C4192,967
(C22×A4).3C4 = A4⋊M4(2)φ: C4/C2C2 ⊆ Out C22×A4246(C2^2xA4).3C4192,968
(C22×A4).4C4 = A4×C2×C8φ: trivial image48(C2^2xA4).4C4192,1010

׿
×
𝔽